Developing a high-resolution x-ray imager using electron-multiplying (EM) CCDs
نویسندگان
چکیده
Applications at synchrotron facilities such as macromolecular crystallography and high energy X-ray diffraction require high resolution imaging detectors with high dynamic range and large surface area. Current systems can be split into two main categories: hybrid pixel detectors and scintillator-coupled Charge-Coupled Devices (CCDs). Whilst both have limitations, CCD-based systems (coupled to fibre-optics to increase imaging area) are often used in these applications due to their small pixels and the high resolution. Electron-Multiplication CCDs (EM-CCDs) are able to suppress the readout noise associated with increased readout speed offering a low noise, high speed detector solution. A previous pilot study using a small-area (8 mm × 8 mm) scintillator-coupled EM-CCD found that through high frame-rates, low noise and novel uses of photon-counting, resolution could be improved from over 80 μm to 25 μm at 2 fps. To further improve this detector system, high speed readout electronics can be used alongside a fibre-optic taper and EM-CCD to create a “best of both worlds” solution consisting of the high resolution of a CCD, along with the low noise, high speed (high dynamic range) and large effective area of pixel detectors. This paper details the developments in the study and discusses the latest results and their implication on the system design.
منابع مشابه
Electron-multiplying CCDs for future soft X-ray spectrometers
CCDs have been used in several high resolution soft X-ray spectrometers for both space and terrestrial applications such as the Reflection Grating Spectrometer on XMM-Newton and the Super Advanced X-ray Emission Spectrometer at the Paul Scherrer Institut in Switzerland. However, with their ability to use multiplication gain to amplify signal and suppress readout noise, EM-CCDs are being conside...
متن کاملPhoton-counting imaging camera for high-resolution X-ray and -ray applications
Standard X-ray imaging techniques using CCDs require the integration of thousands of X-ray photons into a single image frame. Through the addition of a scintillating layer to the CCD it is possible to greatly increase the X-ray detection efficiency at high energies. Using standard imaging techniques with the inclusion of the scintillating layer does, however, leave serious limitations on the sp...
متن کاملImproving the resolution in soft X-ray emission spectrometers through photon-counting using an Electron Multiplying CCD
In 2007, a study of back-illuminated Charge-Coupled Devices (CCDs) for soft Xray photon detection demonstrated the improvements that could be brought over more traditional micro-channel plate detectors for X-ray spectrometers based on diffraction gratings and position sensitive detectors. Whilst the spatial resolution was reported to be improved dramatically, an intrinsic limit of approximately...
متن کاملA study of Electron-Multiplying CCDs for use on the International X-ray Observatory Off-Plane X-ray Grating Spectrometer
CCDs are regularly used as imaging and spectroscopic devices on space telescopes at X-ray energies due to their high quantum efficiency and linearity across the energy range. The International X-ray Observatory’s X-ray Grating Spectrometer will also look to make use of these devices across the energy band of 0.3 keV to 1 keV. At these energies, when photon counting, the charge generated in the ...
متن کاملHigh resolution x-ray and -ray imaging using a scintillator-coupled electron-multiplying CCD
Over the last decade the rapid advancements in CCD technology have lead to significant developments in the field of low-light-level, Electron-Multiplying CCDs (EM-CCDs). The addition of a gain register before output allows signal electrons to be multiplied without increasing the external noise. This low effective readout noise, which can be reduced to the sub-electron level, allows very small s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013